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Phase synchronization in bidirectionally coupled optothermal devices
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We present the experimental observation of phase synchronization transitions in the bidirectional coupling of
chaotic and nonchaotic oscillators. A variety of transitions are characterized and compared to numerical simu-
lations of a time delayed model. The characteristic @hase jumps usually appear during the transitions,
specially in those clearly associated with a saddle-node bifurcation. The study is done with pairs of optothermal
oscillators linearly coupled by heat transfer.
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[. INTRODUCTION states with phase jumps and PS states with uncorrelated am-
plitudes. The experiment is done with a kind of optothermal
Synchronization of coupled chaotic oscillators has re-nonlinear oscillators linearly coupled by heat transfer and we
cently been the object of intensive research and differenfave used pairs of two- and three-dimensional oscillators
types of synchronization have been descripe@]. One of  that exhibit periodic and chaotic evolutions when isolated,
the relevant behaviors expected for weak couplings is théespectively. In all of the cases, the coupled elements are
phase Synchronizatidms phenomenon, i.e., the Synchroni_ nearly Sl_mlla..r but not |d.ent|C&|, with Sl|ght d|ﬁ:erer:]ces In
zation of phases while amplitudes have not to be necessarifjoth oscillating frequencies and steady-state solutions. Nu-
correlated. The transition to PS when the coupling is in-merical simulations in reasonable agreement with the experi-
creased was first observed in mutua”y Coup|e"d§m‘ mod- mental results indicate that we have observed PS transitions
els by Rosenblunet al. [3]. A characteristic feature of the clearly associated either with a cyclic saddle-node bifurca-
observed transition is the occurrence of intermediate states #Pn or with a secondary Hopf bifurcation. Nevertheless, the
which the phase difference of the oscillators remains almostnalysis points out a rich variety of PS transitions without a
fixed, for finite time intervals suddenly interrupted byr2 clear relation with a specific bifurcational process.
phase jumps and the mean frequency of such jumps de-
creases with increasing the coupling towards the PS state, \onLINEAR DEVICE AND EXPERIMENTAL SETUP
[3,4]. The transition to PS has been numerically studied with
different models considering two or more oscillators and it The nonlinear oscillators are based on the so-called opto-
has been associated with a variety of dynamical bifurcationthermal bistability with localized absorptiqiBOITAL) and
[4-10. Phase jumps are almost always observed in the nuthey have been described in detail elsewhggdg—27. A
merically simulated PS transitions but with a variety of scal-BOITAL device consists of a Fabry-Re cavity, where the
ing properties that seem related to the kind of underlyingnput mirror is a partially absorbing film, the rear mirror is a
bifurcation[3,4,11,9 and the influence of noigd 2]. high-reflection dielectric coating, and the spacer between
Experimental demonstrations of PS to an external perimirrors is constituted byN transparent layers with alterna-
odic pacing have been reported for a variety of systems exively opposite thermo-optic coefficients. The cavity is illu-
hibiting chaotic evolution§13—16 and irregular biological minated with a focalized laser beam and the reflected power
rhythms[17,18. The PS between unidirectionally coupled is detected with a photodiode. The light absorption in the
chaotic oscillators has been also reporfdé®,20 and the input mirror is affected by the interference effects, as de-
concept of phase synchrony has been used for the characteeribed by the Airy function, and it constitutes the nonlinear-
ization of rather complex oscillatory behaviors such as thoséy of the system. The device presents a multiple stationary
observed in brainf21-23. The first experimental observa- solution associated with the periodicity of the nonlinear
tion of a transition to PS in bidirectionally coupled oscilla- function. The effective dimension of the device dynamics is
tors has been reported very recent4]. In this case the N and the system is able to experience uiNte 1 different
transition happens via phase jumps occurring upwards ddopf bifurcations due to the competition and time delay be-
downwards irregularly, in a similar way as numerically de-tween the contributions of the various layers to the light
tected in coupled hyperchaotic &sler oscillators, where PS phase shift within the cavit}25,26.

has been related to type-II inttermiten(®4, and with scaling As shown in Fig. 1, different oscillators separated by a
properties agreeing well with those observed in couplectertain distance can be created by focusing parallel light
Rassler model$4]. beams onto the same transversally extended optical device.

In this work we present a detailed experimental analysisThe nonlinear elements are coupled by heat propagation
of a number of synchronization transitions observed in pairshrough the cavity spacer and the separation distanoay
of bidirectionally coupled oscillators, including intermediate be used to adjust the coupling strength. The oscillators have
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simply determined from the relative position of the indi-
2 vidual oscillatory maxima and, since it exhibits time varia-
PB.S tions very much slower than the oscillation periods, this
method provides us with equivalent results as those using the
Hilbert transform of the signdl3].
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Ill. TWO COUPLED TWO-DIMENSIONAL SUBSYSTEMS

Two different routes to phase synchronization have been
(/4 clearly observed in the case of two coupled two-dimensional
subsystems, one transition through phase jumps and another
one through a secondary Hopf bifurcation. In the experiment
Dielectric mirror —* the two transition types have been obtained by changing the
d layer thicknesses and separation distance between sub-
systems and they have been also reproduced in numerical
simulations of a simple model of the coupled system.

FIG. 1. Experimental setup where two light beams focalized on  The pehavior of a BOITAL cavity is well described by the
the BOITAL device create a pair of nonlinear oscillators. The Sepahomogeneous heat equation, subject to a nonlocal and non-
rating distance can be changed with the mobile mirror to modify thqinear boundary conditiofi25]. This physical model can be
thermal coupling strength. The polarizing beam splitté83 and ~ oy,06 to a dimensionless model of order equal to the num-

retarder plates are used to regulate the relative powers of the Wer of layers and where the variablgs are the light phase
beams, to optically isolate the laser cavity from the nonlinear device

and to obtain independent detection of the reflected light from theéhIfts dug to temp_erature rises in each one of the 'fm >
tWo oscillators. very i; is proportional to the averaged temperature rise and

to the thermo-optical coefficieni; of the corresponding
the same cavity parameters, although slight optical path difl_ayer. A model for a pair of thermally coupled two-layer

ferences may occur due to nonuniform thicknesses and t8SC'"at°rS has been already used in R28] to describe the

different light beam inclinations, and significant differences"’“‘npIItUde death effect with very acceptable resuits. The

may be introduced with the incident light powers. The IightmOdeI is made up by the following four equations:
beam of 488 nm is provided by an argon-ion laser with the dy?

/
A [

Absorbing mirror —

power fluctuations reduced to less than 0.1% by means of an  —— = — b, y/2— b+ G A(42) Y2+ 1yl (t— 1)
electro-optic modulator subjected to feedback. The light dt
beam is divided in a polarizing beam splitter, the relative —(Cy+Co) 2

powers of the output beams are regulated by changing the

input polarization with ax/2 plate and, finally, the two dyd 7

beams are circularly polarized with properly orientett ——= = — b b+ GLA(YR) Y2+ cr— YR (t— 1),
plates and focalized to a 5@m-diameter spot. The light dt n
polarization is not relevant for the nonlinear device because

b
it contains isotropic materials only and almost normal inci- l/’1 b= Dot G AP P b (L — 7
dences are always used. Th&! plate, jointly with an addi- dt 1/~ baaft GLAWT) et ol v
tional polarizing beam splitter, allow us to collect the re- ey el
flected light from the nonlinear device on a photodiode and, (C1FCo) 1,

at the same time, they avoid any return to the laser cavity q lﬂb .
that could produce instabilities into the laser oscillator. The ~72 _ _ b_ b by /b 72 a,
nonlinear device is placed on a thermoelectric plate to define dt barf1 = oozt GoAY) et c: 7 vilt=m),
better the background temperature and to avoid uncontrolled ]
changes in the cavity optical path. where superindexes andb denote the two subsystemg’
In the case of nearly equal oscillators the transition to PS= %5+ ={_ 14 is the total round-trip phase shifi is the
is expected to be observed from very weak to stronger couight phase shift in the absence of laser heating, #hi the
plings[3,4]. The coupling is considered weak when the limit normalized incident light power for the oscillatarThe non-
cycle attraction, given by the system nonlinearity, is muchlinear function A(¢*) is the Airy function describing the
larger than the coupling effects. In this way, transitions exdight interference within the absorbing mirror, it depends on
pected as we move from weak to strong couplings could alsthe mirror parameters only and is the same for both oscilla-
be observed by decreasing the strength of the system nonliters except for possible differences in the initial phaggs
earity. In our case, the nonlinearity strength directly depend3he coefficientsb;; and G; depend on parameters of the
on the input light power, which can be easily varied indepenspacing layers as indicated in RE€26] and are common to
dently of the rest of parameters, and the PS transitions haveoth oscillators. The diffusive coupling is simply described
been observed by decreasing the total incident power for By considering the heat flow from the first layer of each
fixed separation distance. oscillator, i.e., the layer next to the absorbing film, towards
The phase differenc@ between the two subsystems is both layers of the other oscillator. The heat flow from the
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second layer is not considered because this layer has tem20n-
perature variations much more lower than the first one. The -
finite speed of heat propagation is taken into account byg i
introducing two different time delays;=d?/D; and 7, <
=(d?+ gf)/D1 into the terms describing the heat arrival at ®

the two layers, respectively. The coupling coefficients are |
taken as ¢=f(K,/d?) and g=fK,/(d’+g3), whereD,,
K1, andg, are the thermal diffusivity, thermal conductivity 7
and thickness of the first layer, respectively, drid a con- .
stant factor that relates the heat transfer with phase varia-
tions. 2

112.2mW

110.1mW

104.0mW

103.0mW

R=101.5mW

A. Transition through phase jumps

We generate a pair of oscillatorg,andb, in a two-layer a)
device made of glass and sunflower oil, with thicknesses
01,,=400 um and 120um and effective thermo-optical co- 103.0mW
efficients 7, ,=107° K™! and —3.4x10 % K™%, respec-
tively. The input mirror of the cavity is a 7-nm nickel- a
chrome film with reflections of about 0.2 and a transmission (”b{lmit)
of about 0.4 and the rear dielectric mirror has a high reflec-
tion (>0.98). The incident laser beams with pow®&%and
PP are adjusted to be equal within a 4% of error and with a R

K . L .. . (arb. unit.)

separating distance equal to 6 mm. Maintaining the ratio
P3/PP=1 and increasing the total input powét,= P2
+PB, the reflected power®3 and P2, start to oscillate at
2.33 Hz through a Hopf bifurcation fd?,=73.1 mW, while
without coupling the individual units begins to oscillate for
input power valuesRy, Pg) equal to(37.0 mwW, 0 mW and
(0 mW, 41.5 mW with frequencies 2.29 and 2.35 Hz, re-
spectively.

Figure Za) shows the reverse of a PS transition with in- 87
creasing the input power. Up t8,=101.5 mW both oscil-
lators show single-frequency periodic signals of different

amplitudes but with the same frequency and a constant phas fj"

difference 0 that changes withP,. For P, values above 'E

101.5 mW, the system exhibits irregularly separated phase &

jumps in which one oscillator makes one more oscillation 4m

than the other in a short time interval. With increasipg, ; t i

the jumps happen more frequently and become regularly 10s

separated, while the mean slope#gf) increases. The phase 2n-

jumps manifest the tendency of the units to desynchronize b)

and to differentiate their mean oscillation frequencies. The

jump process is pointed out in more detail in Figh)2wvhere FIG. 2. Experimental results illustrating a synchronization tran-

the oscillatory signals of both units for 103 mW are shownsition with phase jumps obtained by decreasing the total incident
together with the evolution of the time interval between suc-power in the coupled pair of two-layer oscillatotg) Time evolu-
cessive oscillatory maxima. Notice that the periods of bothion of the phase difference for different P, values.(b) Detail of
units are continuously varying, that they become equal dura pair of phase slips fdP.=103.0 mW, as seen in the time evolu-
ing the long intervals of constamt and that the phase slips tions of the output powers and of the time interTabetween suc-
occur through strong variations of both periods during whichcesive oscillatory maxima of both units.

one unit oscillates faster than the other. Similar variations

also appear in the oscillation amplitudes. The Fourier spectrthe two units become dominated by contiguous sidebands
shown in Fig. 3 denote the appearance of a quasiperiodiwhile the number of peaks decreases.

state with the progressive differentiation of a second fre- Figure 4 presents numerical simulations for a configura-
guency and the gradual predominance of one or another fr¢ion similar to the experimental case and with the parameter
guency on each unit. During the transition the width of thevalues given in the caption. These results show the same
initial frequency peak grows by developing a large numberkind of transition to synchronization by phase jumps with
of equidistant sidebands with gradually increasing spacingvery similar time evolutions and power spectra. In both ex-
as determined by the frequency of phase jumps, and, finallyperiment and simulationg(t) does not reach the straight
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Reflected power of a Reflected power of aand b (after the first saddle-node bifurcatiprand the free periodic
- .- 112.2mW orbit (after the second bifurcation where the saddle orbit van-
101.5mW ) ishes with the unstable node orbit from which the invariant

torus was creatgdhat will finally shrink on the fixed point
in the Hopf bifurcation29]. Hysteretic transitions involving
additional global bifurcations can also ocd@] but their
experimental characterization is rather difficult.

-

—
N
w
—
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W

B. Transition through a secondary Hopf bifurcation

It is also known from the periodically forced systems that
the transition between single- and two-frequency states can
occur directly through a torus or secondary Hopf bifurcation

nd 1 1
e
° .
—
lw'

1—1 2 3 - 122.(2)mW 3 and, although accompanied by complex features, such a kind
] 106.8mW - 1 . of transition was observed in our bidirectionally coupled os-
] . ] P cillators by slightly decreasing the oil layer to 1@0n and
] ] the distancal to 5.35 mm. In the experimental results of Fig.

] J\AMM ] 5 it may be seen that the periodic orbit with constari85.1

0 . . . ) 0 mW) born in a Hopf bifurcation of the stationary solution,

11 2 3 041 2 3 experiences a torus bifurcation at 35.3 mW, as denoted by
] 110.lmW | the appearance of a low-frequency modulation with gradu-

] P

ally increasing depth in the oscillatory signals and of a sec-
ond frequency in the power spectrum of uait The new
frequency does not become noticeable in the hisipectrum
3 up to higher light powers. For a narroR interval the os-
freq. (Hz) cillators evolve with equal mean frequency but with alternate
phase slips yielding low-amplitude oscillations éhat the
frequency difference of the two Fourier compone(28.5
mW). At a certain power this almost-synchronized

. _ o #-oscillating state switches suddenly to another quasiperi-
line of independent oscillations that would correspond to thgyyic state in which the two units have different mean fre-

absence of coupling because this is not possible by increagyencies due to the dominance of one or another Fourier
ing the light power. o component andd(t) grows with the corresponding mean
As is kno_v_vn from the periodically _forced systems, the slope while the regular phase slips remé®5.9 mW. The

above transition between two- and single-frequency statesomparison of these spectra with those of Fig. 3 clearly
may be associated with the penetration within the inner par§nq\ys the different way through which the second frequency
of the period-1 tongue by crossing two cyclic saddle-nodeypnears in the two kinds of transitions between periodic and
bifurcations. The process is usually reversible and, beginningasiperiodic evolutions. The torus bifurcation creates a sec-
from the quasiperiodic state, it successively includes the pespg frequency distinct from the first one, while the intermit-
riodic pulling with regular phase jumps, the noise enhanceqgnt |ocking differentiates the second frequency from the first
type-I intermittencies, the locked state on a resonant torugne by gradually increasing the frequency of jumps.

The numerical results presented in Fig. 6 show a similar

b 1 1

o

il .
Iw.

w

2hoq 1) °

FIG. 3. Fourier spectra of the reflected pow®? and P} for
different input powers, corresponding to the case of Fig. 2.

30% but richer process when the normalized input poweris
o 54 53 increased: the fixed point makes a subcritical Hopf bifurca-
(rad) 7 55 tion followed by successive cyclic saddle-node bifurcations
20m 32 creating periodic orbits withy alternatively next to O orr
] [Fig. 6(a)]. The coexistence of orbits with differeftoccurs
. 51 in very narrow intervals of the input power and this might
10% explain their absence in the experimental observations. Such
] ~50 a multiplicity of periodic orbits and theié preferences have
- Ve been analitically predicted with a simple phase model for a
0 o Cl tl(s) T T coupled pair of oscillator§30]. For largery, values, the

periodic orbit (denoted o« in Fig. 6) becomes unstable
FIG. 4. Numerical simulation of the time evolution of the phase through a subcritical secondary Hopf bifurcation giving rise
difference @ for different P, values. Following the dimensionless t0 @ quasiperiodic solutiofidenoted8 in Fig. 6b)] that
notation defined in Ref26], the parameters of the cavity spacer are Shows# oscillations very similar to those of the experimental
mo=1, =10, g1,=1, 0.5,K;,=D;,=1, 0.1,hg=hg=0.5, 4§ signal for 35.5 mW. As in the experiment, this state vanishes
=, y3=2, the separating distanceds=5.6, and the normalized at a certainy, value and the system switches to another
input powers are/®= 2= y./2 , with i, the total input power. guasiperiodic state with two different mean frequenciss
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0.1
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1 @ i |
02 3ﬂ/2|||||||l||
ot L 01 41.06 407 y 4108
0.0 h 0.0 S N b)
0.0 5.0 0.0 5.0
35.9mW FIG. 6. Numerical simulation for the same parameters as in Fig.
02 03 1 4 butd=28.0 pointing out a complex sequence of bifurcations in a
2 02 synchronization transition associated with the torus bifurcatian.
0.1 1 Bifurcation diagram representing the total phase shift of dehice
0.1 (in the coupled systepand the relative phas as a function off,
0.0 N 0.0 JL JL near the Hopf bifurcation of the fixed point, which occurs subcriti-
0.0 5.0 0.0 5.0 cally at.,=38.57. The periodic state derives from a sequence of
38.7 mW cyclic saddle-node bifurcationéo) Continuation of the bifurcation
0.3, 2 0.3 1 diagram for highery, values by representing either the relative
1 phased, for states with almost constarit values, or the mean
0‘2: 1 02 frequency difference between the two units for the quasiperiodic
0.1 0.1 2 solutions with increasing.
0.0/ 0.0/ associated vector field includes two linearly independent
00 freq. (Hz) >0 0.0 fre. z) >®  components and this means possibilities for a higher degree
b) of multiplicity in both the stationary and oscillatory solu-

tions.

FIG. 5. Synchonization transition associated with a torus bifur- The experimental results of Fig. 5 also show how the
cation observed in a pair of two-layer oscillators slightly more dis-phases and amplitudes of the two coupled oscillators may be
imilar than in the case of Fig. 2a) Time evolution of the phase differently correlated. Increasing, from 35.9 mW to 38.7
difference @ for different P, values.(b) Fourier spectra of the re- mW, the whole system evolution changes from quasiperiodic
flected signal$3 and Py, for different input power values. Labels 1 to chaotic, the amplitudes become largely uncorrelated but
and 2 relate peaks of equal frequency in the spectra of the two unit)(t) remains almost unchanged. The lack of amplitude cor-

relation is pointed out by the reflected power time evolutions
notedd), while a third quasiperiodic stape coexists also for  [Fig. 7(a)] and more clearly by the Poincasections of the
a certaing, interval. It is reasonable to suspect saddle-nodeeconstructed attractors. The recontructions in a plane of sec-
connections between such quasiperiodic solutions. The mution exclusive of subsystern [Fig. 7(b)] show patterns cor-
tiplicity of solutions seems to be intrinsic for mutually responding to quasiperiodic and chaotic signals for 35.9 mwW
coupled nonlinear systems because the nonlinear part of ttend 38.7 mW, respectively. The same attractors reconstructed
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FIG. 7. (8 P& and PY time evolutions forP,=35.9 mW and 0 50
38.7 mW.(b) Poincaresections of embedded attractors from FP%
time evolution forP,=35.9 mW @) and 38.7 mW ¢ ). (c) Poin- b)
caresections in the IP%,PE) plane for the same cases as(im to ) ) ] o
point out the correlation degree between oscillators. _ _FIG. 8. Expe_rlmental results_ illustrating a synchronlzathn tran-
sition observed in a coupled pair of three-layer BOITAL oscillators.

in a hybrid plane of the two subsystefitdg. 7(c)] indicate a (&) Time evolution ofé for different input light powers(b) Verti-

high correlation of amplitudes for 35.9 mW but a poor onecally enlarged representation 6ft) for P,=52.5 mW showing the

for 38.7 mW. It is an example of transition to chaos in theoccurrence of fast oscillations. The time variation of the individual
coupled pair without changes in the phase relationship bephases of the coupled oscillators with respect to the harmonic os-
tween the two OSCillatOI’S, i.e., both units evolve with theci”ation at the mean frequen(}y_ is also represented.

same mean frequencies and with the same regular phase slips
as before, while the amplitudes has lost correlation. With

t@e 100

; : : ; : dyb
further increasingP, the system evolution remains chaotic —le__ a_ a_ a ay .2
while 6(t) becomes first irregula®1.8 mW and then tends dt P21~ baalo = bzalist GA) Y.
to restabilization by showing intervals of oscillations
conected by 2z jumps(44.2 mW. This 6 behavior has been dys a a a a2
also found in simulations of sets of coupled phase oscillators i = Parhi—Daae— basthz + GaA(YT) e,

near phase synchronization transitidi®d]. For P, values
near 50 mW the system recovers quasiperiodicity,

althouglfb ; :
X - r subsystema and the same equations but exchangn
with a lower mean frequency difference. y d g

with b for the other subsystem. The coefficieints and G;
depend on parameters of the spacing layers and the nonlinear
function A(¢*) depends on the mirror propertigd6]. The
Phase synchronization transitions have been also observéiinplification of the coupling scheme by disregarding heat
in coupled oscillators created on a three-layer BOITAL de-coupling towards the second and third layers makes the in-
vice[32], which already present chaotic evolutions when iso-tegration easier and we expect that this has not relevant con-
lated. The whole system is described with a reduced mode§eduences because equivalent results are obtained with one
equivalent to that used for the two-layer case, but only conOr two time delays in the two-layer case.
sidering heat transfer within the first layer of the device. The ~The results of Figs. 8—13 correspond to a pair of oscilla-
model is written as tors generated in a BOITAL device made of 1ptn of
glass, 35um of sunflower oil and 1 mm of glass, with equal

IV. TWO COUPLED THREE-DIMENSIONAL SUBSYSTEMS

dyf a a a input powers but different initial phase shifts, and a separa-
- = _ — a a l
dt buy1=biay = Digth3+ CaA(Y7) Ye tion of d=6 mm. Figure 8 presents the time evolutionébf
b for different incident powers and Fig. 9 shows the time evo-
iy (t—71), lutions of both oscillators for the three lower powers. After
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51.9mW 0.8
PR
PR
._lt_‘ —
52.5mW s
Pi 5
S

0-0 I I 1 I I

53.0mW 0.26 0.32
Pr(tt)

FIG. 10. Section of the reconstructed attractor fbx,

Pi =52.5 mW pointing out the lack of correlation between the two
b reflected powers. The attractor has been embeddefPf(t),
Pr Pa(t+7), PR(1), P(t+7)], with 7 a fourth of the oscillation pe-
ot riod, and the section is for a constant valueR3f(t).
2 I 1s
’g ’g =53.0 and 53.6 mW The number of unrecovered phase
jumps increase with the input power and at a certain power
-7 o become rather regularP¢=54.3 mW). The spectra pre-

[ S o sented in Fig. 11 illustrate how at the end of the transition the
0 Pﬁ(t) 2 0 p;(t) 1 two units oscillate with different frequencies, i.e., the Fourier
components of one unit are almost absent in the other, but it

FIG. 9. Time evolution of the reflected poweP§ andP% and  is not clear how the new frequency appears during the tran-
embedded attractors for the three loviRrvalues of Fig. 8. sition. The subharmonic peak in the spectra of both units

points out the period doubling process occurring below 52.5

the Hopf bifurcation of the stationary solution, the systemmw. The initial frequency components remain always domi-
evolves with a single-frequency periodic oscillation that, fornant in subsystenb without noticeable influence of addi-
P.=51.9 m, begins to exhibit slight amplitude irregularities tional frequencies, while in subsystearthe subharmonic of
although the phase difference remains constant abet8 4 the initial frequency becomes stronger than the fundamental
*+7/10. ForP,=52.5 mW the system has experienced a pepeak and a broad spectrum emerges with several relevant
riod doubling unequally affecting the two subsystems. Itpeaks. Finally, a qualitative change happens in between 54
mainly affects oscillatolb and the two oscillators describe and 54.3 mW in which the subharmonic structures of both
rather different wave form evolutions. The amplitudes andthe units dissapear and the system ends on a two-frequency
phases of both the subsystems vary irregularly but, whilehaotic state with a clear dominance of one of the frequen-
there is a lack of amplitude correlation, the phases tend teies on each subsystem and with a well reguié) evolu-
remain synchronized. The lack of correlation between theion. The final frequencies of subsystemanda seem to be
subsystem amplitudes is pointed out by the section of theelated to the initial frequency and its subharmonic, respec-
embedded attractor represented in Fig. 10, while the synively. Comparison with the typical behavior of a
chronization of phases is visible in Fig(l8. The phase of periodically-forced oscillator suggests that the process might
each oscillator presents large drifts B\{t) remains confined be associated with the saddle-node bifurcation of the
within an interval lower thanr by describing oscillations period-2 tongue, within which period-doubling bifurcations
with a frequency equal to the half of the oscillatory fre- are intrinsically involved[29]. Nevertheless, the lack of a
quency. Such¥ oscillations are clearly associated with the fixed frequency in the present case of bidirectionally coupled
period doubling that mainly affects oscillatbr oscillators makes rather difficult to characterize the process.

The differentiation of the units enhances whén is Figure 12 shows the evolution of the Lyapunov exponents
slightly increased. Thed(t) fluctuations become of lower with the incident light power through the PS transition, as
frequency but of amplitude as large as about @&1d from  well as the change of the difference between the mean fre-
time to time a 2r phase jump remains unrecovereB.( quencies of the two oscillators. The exponents have been
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FIG. 12. Lyapunov exponents and frequency difference evolu-
tion when the input power is increased. A tendency of one of the

negative Lyapunov exponents to vanish can be observed between
53.5 and 54.0 mW.

— T & U
520 525 53.0

cational sequence experienced by the system. For instance,
Fig. 13 illustrates a PS transition observed with the same
device as in Fig. 8 and for the same conditions, except for a
slightly different value of the background temperature regu-
lated by the thermoelectric plate. This temperature modifies

the initial phase shift)g of the cavity roundtrip for the two
nonlinear oscillators and consequently affects the nonlinear
functions of both subsystems. In the case of Fig. 13, the
synchronized state does not exhibit the period-doubling bi-
oo 0. furcation, and the phase jumps of the intermediate states ap-
freq (Hz) freq (Hz) pears with a clear step-by-step succession and flat plateaus. A
similar contrast of behaviors may be seen in the numerical
FIG. 11. Fourier spectra of both reflected light signals for dif- results of Fig. 14, where two PS transitions corresponding to
ferent input powers, corresponding to the transition of Fig. 8. Thethe same parameter values except for the initial light phase
labels 1 and 1/2 denote the peaks of the initial frequency and itshifts are represented. Figure(@4corresponds to an almost
subharmonic. symmetric case with a rather small difference between the
initial light phase shifts of the two subsystems. As in the
determined from a six-dimensional embedding based on thexperimental case of Fig. 8, the synchronized state begins the
reflection outputs of the two oscillators. Notice the presencelesynchronization transition by showing oscillations in the
of two positive, one vanishing, and three negative exponentselative phase(t) at a frequency equal to half of the oscil-
one of which manifests a tendency to vanish just when théating frequency, which are clearly associated with a period-
frequency difference increases markedly and the phase sydoubling bifurcation, and the intermediate states show pla-
chronization is lost. This tendency would be in agreementeaus with fluctuating 2 jumps. Figure 1é) corresponds to
with the behavior found in the Rsler model by Rosenblum more different values of the initial phase shift for the sub-
et al. [3], in which one of the two vanishing exponents ex- systems and the desynchronization process is similar to the
isting in the absence of coupling becomes clearly negativexperimental case of Fig. 13. The long intervals of constant
during the PS transition as a consequence of the interdepef-between successive phase jumps indicate a stronger ten-
dence between the phases of the two oscillators. dency to sy nchronization, as compared to the case of Fig.
The details of a synchronization transition may vary sig-14(a), and it can be attributed to the dominance of one sub-
nificantly by slightly changing the parameters of the devicesystem on the other due to the asymmetry introduced by the
and this occurs associated with changes in the actual bifuinitial phase shifts.

3

0
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FIG. 13. Phase synchronization transition observed in the same

experimental conditions as in Fig. 8 but with a background tem-
perature of 20.6 °C instead of 20.3 °C: The differences between the ‘K:
two cases must be attributed to changes of the initial phase shifts of

the interferometric cavity.
R

V. CONCLUDING REMARKS
—

In conclusion, we have investigated the relative behavior 36m
of bidirectionally coupled pairs of slightly different nonlinear
oscillators as a function of the nonlinearity strength. The 0
analysis has been done by using pairs of two-dimensional  (rad)
and three-dimensional oscillators in order for the individual
subsystems to be able or not to exhibit chaos when isolated.

A variety of desynchronization transitions from single-
frequency locked states to two-frequency states, where each 10
subsystem tends to be dominated by its own frequency have
been observed and characterized in detail. Intermediate states
with the characteristic 2 phase jumps generically appear
during the transitions, specially in those clearly associated
with a saddle-node bifurcation. Phase synchronization states b)

with uncorrelated amplitudes have also been usually found, FiG. 14. Numerical simulations illustrating the influence of a
but for narrow ranges of the control parameter and always ajight modification of the initial interferometric phase shifts on the
the onset of chaos. We have observed PS states with bops transition. The dimensionless paramefa6 of the three-layer
units evolving either at equal or at different mean frequendevice aren;,5=1, —6, 1;g125=1, 0.4, 6;K;,35=D155=1,
cies. 0.1, 1; andhg=hg=5; the separating distanceds=5.6; the input

In comparison with the periodically forced oscillators, the powers y2= 2= /2 and the initial interferometric phase shifts
analysis of a pair of mutually coupled oscillators is muchare(a) %3=0.01, ¢5=0.03 and(b) ¥3=0.0, y3=0.3.

=209
t 80

(-}
<
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more difficult due to the lack of the fixed reference intro- frequencies and intermediate states with @hase jumps al-
duced by the pacing frequency. In the two-dimensional caseyays appear. The analysis of Lyapunov exponents indicates
the PS transitions associated with either a saddle-node orthat the transition from states with both units at equal mean
torus bifurcation have been clearly observed. The simpledrequency to states with the units at different mean frequen-
situation corresponds to a saddle-node bifurcation of theies is accompanied by a tendency of a negative exponent to
period-1 locked state, in which the system response remainsnish.
regular during the transition except for a range of intermedi- The experimental observation of phase synchronization
ate states with intermittent phase jumps. In the case of affects could be also investigated by introducing optical in-
torus bifurcation, the presence of the second frequency prastead of thermal coupling between the optothermal oscilla-
motes the desynchronization process by means of a staters. The main advantage will be the good control of the
with both units at the same mean frequency but with oscil-coupling degree without the necessity of modifying the ex-
latory slips in@, and which quickly becomes a regular qua- ternal input power to adjust the nonlinearity strength. In ad-
siperiodic state with different mean frequencies for the subdition, the reflected light will connect the oscillators without
systems. The quasiperiodic regularity is then lost and chaoany frequency filtering, while heat diffusion damps with the
appears through a PS state with uncorrelated amplitudes folrequency and the separation distance. Moreover, the optical
lowed by a sequence of complex phenomena. coupling will be nonlinear and will introduce additional pos-
In the case of three-dimensional oscillators, the desynsibilities for complex behaviors.
chronization transitions appear with a so rich variety of fea-
tures that n_1ake rat_her dlfflcult the association of the process ACKNOWLEDGMENT
with a particular bifurcation of the whole system. The PS
states with uncorrelated amplitudes have been found with Financial support from the Spanish DGES under Grant
both oscillators evolving either at equal or different meanNo. PB98-0899 is acknowledged.
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