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Phase synchronization in bidirectionally coupled optothermal devices
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We present the experimental observation of phase synchronization transitions in the bidirectional coupling of
chaotic and nonchaotic oscillators. A variety of transitions are characterized and compared to numerical simu-
lations of a time delayed model. The characteristic 2p phase jumps usually appear during the transitions,
specially in those clearly associated with a saddle-node bifurcation. The study is done with pairs of optothermal
oscillators linearly coupled by heat transfer.
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I. INTRODUCTION

Synchronization of coupled chaotic oscillators has
cently been the object of intensive research and differ
types of synchronization have been described@1,2#. One of
the relevant behaviors expected for weak couplings is
phase synchronization~PS! phenomenon, i.e., the synchron
zation of phases while amplitudes have not to be necess
correlated. The transition to PS when the coupling is
creased was first observed in mutually coupled Ro¨ssler mod-
els by Rosenblumet al. @3#. A characteristic feature of the
observed transition is the occurrence of intermediate state
which the phase difference of the oscillators remains alm
fixed, for finite time intervals suddenly interrupted by 2p
phase jumps and the mean frequency of such jumps
creases with increasing the coupling towards the PS s
@3,4#. The transition to PS has been numerically studied w
different models considering two or more oscillators and
has been associated with a variety of dynamical bifurcati
@4–10#. Phase jumps are almost always observed in the
merically simulated PS transitions but with a variety of sc
ing properties that seem related to the kind of underly
bifurcation @3,4,11,9# and the influence of noise@12#.

Experimental demonstrations of PS to an external p
odic pacing have been reported for a variety of systems
hibiting chaotic evolutions@13–16# and irregular biological
rhythms @17,18#. The PS between unidirectionally couple
chaotic oscillators has been also reported@19,20# and the
concept of phase synchrony has been used for the chara
ization of rather complex oscillatory behaviors such as th
observed in brains@21–23#. The first experimental observa
tion of a transition to PS in bidirectionally coupled oscill
tors has been reported very recently@24#. In this case the
transition happens via phase jumps occurring upwards
downwards irregularly, in a similar way as numerically d
tected in coupled hyperchaotic Ro¨ssler oscillators, where PS
has been related to type-II inttermitency@9#, and with scaling
properties agreeing well with those observed in coup
Rössler models@4#.

In this work we present a detailed experimental analy
of a number of synchronization transitions observed in p
of bidirectionally coupled oscillators, including intermedia
1063-651X/2002/66~3!/036223~10!/$20.00 66 0362
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states with phase jumps and PS states with uncorrelated
plitudes. The experiment is done with a kind of optotherm
nonlinear oscillators linearly coupled by heat transfer and
have used pairs of two- and three-dimensional oscillat
that exhibit periodic and chaotic evolutions when isolate
respectively. In all of the cases, the coupled elements
nearly similar but not identical, with slight differences
both oscillating frequencies and steady-state solutions.
merical simulations in reasonable agreement with the exp
mental results indicate that we have observed PS transit
clearly associated either with a cyclic saddle-node bifur
tion or with a secondary Hopf bifurcation. Nevertheless,
analysis points out a rich variety of PS transitions withou
clear relation with a specific bifurcational process.

II. NONLINEAR DEVICE AND EXPERIMENTAL SETUP

The nonlinear oscillators are based on the so-called o
thermal bistability with localized absorption~BOITAL ! and
they have been described in detail elsewhere@25–27#. A
BOITAL device consists of a Fabry-Pe´rot cavity, where the
input mirror is a partially absorbing film, the rear mirror is
high-reflection dielectric coating, and the spacer betwe
mirrors is constituted byN transparent layers with alterna
tively opposite thermo-optic coefficients. The cavity is illu
minated with a focalized laser beam and the reflected po
is detected with a photodiode. The light absorption in t
input mirror is affected by the interference effects, as d
scribed by the Airy function, and it constitutes the nonline
ity of the system. The device presents a multiple station
solution associated with the periodicity of the nonline
function. The effective dimension of the device dynamics
N and the system is able to experience up toN21 different
Hopf bifurcations due to the competition and time delay b
tween the contributions of the various layers to the lig
phase shift within the cavity@25,26#.

As shown in Fig. 1, different oscillators separated by
certain distance can be created by focusing parallel li
beams onto the same transversally extended optical de
The nonlinear elements are coupled by heat propaga
through the cavity spacer and the separation distanced may
be used to adjust the coupling strength. The oscillators h
©2002 The American Physical Society23-1
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the same cavity parameters, although slight optical path
ferences may occur due to nonuniform thicknesses an
different light beam inclinations, and significant differenc
may be introduced with the incident light powers. The lig
beam of 488 nm is provided by an argon-ion laser with
power fluctuations reduced to less than 0.1% by means o
electro-optic modulator subjected to feedback. The li
beam is divided in a polarizing beam splitter, the relat
powers of the output beams are regulated by changing
input polarization with al/2 plate and, finally, the two
beams are circularly polarized with properly orientedl/4
plates and focalized to a 50-mm-diameter spot. The ligh
polarization is not relevant for the nonlinear device beca
it contains isotropic materials only and almost normal in
dences are always used. Thel/4 plate, jointly with an addi-
tional polarizing beam splitter, allow us to collect the r
flected light from the nonlinear device on a photodiode a
at the same time, they avoid any return to the laser ca
that could produce instabilities into the laser oscillator. T
nonlinear device is placed on a thermoelectric plate to de
better the background temperature and to avoid uncontro
changes in the cavity optical path.

In the case of nearly equal oscillators the transition to
is expected to be observed from very weak to stronger c
plings @3,4#. The coupling is considered weak when the lim
cycle attraction, given by the system nonlinearity, is mu
larger than the coupling effects. In this way, transitions
pected as we move from weak to strong couplings could a
be observed by decreasing the strength of the system no
earity. In our case, the nonlinearity strength directly depe
on the input light power, which can be easily varied indep
dently of the rest of parameters, and the PS transitions h
been observed by decreasing the total incident power f
fixed separation distance.

The phase differenceu between the two subsystems

FIG. 1. Experimental setup where two light beams focalized
the BOITAL device create a pair of nonlinear oscillators. The se
rating distance can be changed with the mobile mirror to modify
thermal coupling strength. The polarizing beam splitters~PBS! and
retarder plates are used to regulate the relative powers of the
beams, to optically isolate the laser cavity from the nonlinear dev
and to obtain independent detection of the reflected light from
two oscillators.
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simply determined from the relative position of the ind
vidual oscillatory maxima and, since it exhibits time vari
tions very much slower than the oscillation periods, th
method provides us with equivalent results as those using
Hilbert transform of the signal@3#.

III. TWO COUPLED TWO-DIMENSIONAL SUBSYSTEMS

Two different routes to phase synchronization have b
clearly observed in the case of two coupled two-dimensio
subsystems, one transition through phase jumps and ano
one through a secondary Hopf bifurcation. In the experim
the two transition types have been obtained by changing
layer thicknesses and separation distance between
systems and they have been also reproduced in nume
simulations of a simple model of the coupled system.

The behavior of a BOITAL cavity is well described by th
homogeneous heat equation, subject to a nonlocal and
linear boundary condition@25#. This physical model can be
reduced to a dimensionless model of order equal to the n
ber of layers and where the variablesc j are the light phase
shifts due to temperature rises in each one of the layers@26#.
Everyc j is proportional to the averaged temperature rise a
to the thermo-optical coefficienth j of the corresponding
layer. A model for a pair of thermally coupled two-laye
oscillators has been already used in Ref.@28# to describe the
amplitude death effect with very acceptable results. T
model is made up by the following four equations:

dc1
a

dt
52b11c1

a2b12c2
a1G1A~ca!ce

a1c1c1
b~ t2t1!

2~c11c2!c1
a ,

dc2
a

dt
52b21c1

a2b22c2
a1G2A~ca!ce

a1c2

h2

h1
c1

b~ t2t2!,

dc1
b

dt
52b11c1

b2b12c2
b1G1A~cb!ce

b1c1c1
a~ t2t1!

2~c11c2!c1
b ,

dc2
b

dt
52b21c1

b2b22c2
b1G2A~cb!ce

b1c2

h2

h1
c1

a~ t2t2!,

where superindexesa andb denote the two subsystems.cx

5c0
x1( j 51

2 c j
x is the total round-trip phase shift,c0

x is the
light phase shift in the absence of laser heating, andce

x is the
normalized incident light power for the oscillatorx. The non-
linear function A(cx) is the Airy function describing the
light interference within the absorbing mirror, it depends
the mirror parameters only and is the same for both osc
tors except for possible differences in the initial phasesc0

x .
The coefficientsbi j and Gi depend on parameters of th
spacing layers as indicated in Ref.@26# and are common to
both oscillators. The diffusive coupling is simply describ
by considering the heat flow from the first layer of ea
oscillator, i.e., the layer next to the absorbing film, towar
both layers of the other oscillator. The heat flow from t
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second layer is not considered because this layer has
perature variations much more lower than the first one. T
finite speed of heat propagation is taken into account
introducing two different time delayst15d2/D1 and t2

5(d21g1
2)/D1 into the terms describing the heat arrival

the two layers, respectively. The coupling coefficients
taken as c15 f (K1 /d2) and c25 f K1 /(d21g1

2), whereD1 ,
K1, andg1 are the thermal diffusivity, thermal conductivit
and thickness of the first layer, respectively, andf is a con-
stant factor that relates the heat transfer with phase va
tions.

A. Transition through phase jumps

We generate a pair of oscillators,a andb, in a two-layer
device made of glass and sunflower oil, with thicknes
g1,25400 mm and 120mm and effective thermo-optical co
efficients h1,251025 K21 and 23.431024 K21, respec-
tively. The input mirror of the cavity is a 7-nm nicke
chrome film with reflections of about 0.2 and a transmiss
of about 0.4 and the rear dielectric mirror has a high refl
tion (.0.98). The incident laser beams with powersPe

a and
Pe

b are adjusted to be equal within a 4% of error and with
separating distanced equal to 6 mm. Maintaining the ratio
Pe

a/Pe
b.1 and increasing the total input powerPe5Pe

a

1Pe
b , the reflected powers,PR

a and PR
b , start to oscillate at

2.33 Hz through a Hopf bifurcation forPe573.1 mW, while
without coupling the individual units begins to oscillate f
input power values (Pe

a , Pe
b) equal to~37.0 mW, 0 mW! and

~0 mW, 41.5 mW! with frequencies 2.29 and 2.35 Hz, re
spectively.

Figure 2~a! shows the reverse of a PS transition with i
creasing the input power. Up toPe5101.5 mW both oscil-
lators show single-frequency periodic signals of differe
amplitudes but with the same frequency and a constant p
difference u that changes withPe . For Pe values above
101.5 mW, the system exhibits irregularly separated ph
jumps in which one oscillator makes one more oscillat
than the other in a short time interval. With increasingPe ,
the jumps happen more frequently and become regul
separated, while the mean slope ofu(t) increases. The phas
jumps manifest the tendency of the units to desynchron
and to differentiate their mean oscillation frequencies. T
jump process is pointed out in more detail in Fig. 2~b! where
the oscillatory signals of both units for 103 mW are sho
together with the evolution of the time interval between s
cessive oscillatory maxima. Notice that the periods of b
units are continuously varying, that they become equal d
ing the long intervals of constantu and that the phase slip
occur through strong variations of both periods during wh
one unit oscillates faster than the other. Similar variatio
also appear in the oscillation amplitudes. The Fourier spe
shown in Fig. 3 denote the appearance of a quasiperi
state with the progressive differentiation of a second f
quency and the gradual predominance of one or another
quency on each unit. During the transition the width of t
initial frequency peak grows by developing a large num
of equidistant sidebands with gradually increasing spac
as determined by the frequency of phase jumps, and, fin
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the two units become dominated by contiguous sideba
while the number of peaks decreases.

Figure 4 presents numerical simulations for a configu
tion similar to the experimental case and with the parame
values given in the caption. These results show the sa
kind of transition to synchronization by phase jumps w
very similar time evolutions and power spectra. In both e
periment and simulation,u(t) does not reach the straigh

FIG. 2. Experimental results illustrating a synchronization tra
sition with phase jumps obtained by decreasing the total incid
power in the coupled pair of two-layer oscillators.~a! Time evolu-
tion of the phase differenceu for different Pe values.~b! Detail of
a pair of phase slips forPe5103.0 mW, as seen in the time evolu
tions of the output powers and of the time intervalT between suc-
cesive oscillatory maxima of both units.
3-3
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line of independent oscillations that would correspond to
absence of coupling because this is not possible by incr
ing the light power.

As is known from the periodically forced systems, t
above transition between two- and single-frequency st
may be associated with the penetration within the inner p
of the period-1 tongue by crossing two cyclic saddle-no
bifurcations. The process is usually reversible and, beginn
from the quasiperiodic state, it successively includes the
riodic pulling with regular phase jumps, the noise enhan
type-I intermittencies, the locked state on a resonant to

FIG. 3. Fourier spectra of the reflected powersPR
a and PR

b for
different input powers, corresponding to the case of Fig. 2.

FIG. 4. Numerical simulation of the time evolution of the pha
differenceu for different Pe values. Following the dimensionles
notation defined in Ref.@26#, the parameters of the cavity spacer a
h1,251, 210, g1,251, 0.5, K1,25D1,251, 0.1, hF5hB50.5, c0

a

5p, c0
b52, the separating distance isd55.6, and the normalized

input powers arece
a5ce

b5ce/2 , with ce the total input power.
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~after the first saddle-node bifurcation!, and the free periodic
orbit ~after the second bifurcation where the saddle orbit v
ishes with the unstable node orbit from which the invaria
torus was created! that will finally shrink on the fixed point
in the Hopf bifurcation@29#. Hysteretic transitions involving
additional global bifurcations can also occur@8# but their
experimental characterization is rather difficult.

B. Transition through a secondary Hopf bifurcation

It is also known from the periodically forced systems th
the transition between single- and two-frequency states
occur directly through a torus or secondary Hopf bifurcati
and, although accompanied by complex features, such a
of transition was observed in our bidirectionally coupled o
cillators by slightly decreasing the oil layer to 100mm and
the distanced to 5.35 mm. In the experimental results of Fi
5 it may be seen that the periodic orbit with constantu ~35.1
mW! born in a Hopf bifurcation of the stationary solution
experiences a torus bifurcation at 35.3 mW, as denoted
the appearance of a low-frequency modulation with gra
ally increasing depth in the oscillatory signals and of a s
ond frequency in the power spectrum of unita. The new
frequency does not become noticeable in the unitb spectrum
up to higher light powers. For a narrowPe interval the os-
cillators evolve with equal mean frequency but with altern
phase slips yielding low-amplitude oscillations inu at the
frequency difference of the two Fourier components~35.5
mW!. At a certain power this almost-synchronize
u-oscillating state switches suddenly to another quasip
odic state in which the two units have different mean f
quencies due to the dominance of one or another Fou
component andu(t) grows with the corresponding mea
slope while the regular phase slips remain~35.9 mW!. The
comparison of these spectra with those of Fig. 3 clea
shows the different way through which the second freque
appears in the two kinds of transitions between periodic
quasiperiodic evolutions. The torus bifurcation creates a s
ond frequency distinct from the first one, while the interm
tent locking differentiates the second frequency from the fi
one by gradually increasing the frequency of jumps.

The numerical results presented in Fig. 6 show a sim
but richer process when the normalized input powerce is
increased: the fixed point makes a subcritical Hopf bifur
tion followed by successive cyclic saddle-node bifurcatio
creating periodic orbits withu alternatively next to 0 orp
@Fig. 6~a!#. The coexistence of orbits with differentu occurs
in very narrow intervals of the input power and this mig
explain their absence in the experimental observations. S
a multiplicity of periodic orbits and theiru preferences have
been analitically predicted with a simple phase model fo
coupled pair of oscillators@30#. For largerce values, the
periodic orbit ~denoted a in Fig. 6! becomes unstable
through a subcritical secondary Hopf bifurcation giving ri
to a quasiperiodic solution@denotedb in Fig. 6~b!# that
showsu oscillations very similar to those of the experimen
signal for 35.5 mW. As in the experiment, this state vanish
at a certaince value and the system switches to anoth
quasiperiodic state with two different mean frequencies~de-
3-4
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notedd), while a third quasiperiodic statex coexists also for
a certaince interval. It is reasonable to suspect saddle-no
connections between such quasiperiodic solutions. The m
tiplicity of solutions seems to be intrinsic for mutual
coupled nonlinear systems because the nonlinear part o

FIG. 5. Synchonization transition associated with a torus bif
cation observed in a pair of two-layer oscillators slightly more d
imilar than in the case of Fig. 2.~a! Time evolution of the phase
differenceu for different Pe values.~b! Fourier spectra of the re
flected signalsPR

a andPR
b for different input power values. Labels

and 2 relate peaks of equal frequency in the spectra of the two u
03622
e
l-

he

associated vector field includes two linearly independ
components and this means possibilities for a higher deg
of multiplicity in both the stationary and oscillatory solu
tions.

The experimental results of Fig. 5 also show how t
phases and amplitudes of the two coupled oscillators ma
differently correlated. IncreasingPe from 35.9 mW to 38.7
mW, the whole system evolution changes from quasiperio
to chaotic, the amplitudes become largely uncorrelated
u(t) remains almost unchanged. The lack of amplitude c
relation is pointed out by the reflected power time evolutio
@Fig. 7~a!# and more clearly by the Poincare´ sections of the
reconstructed attractors. The recontructions in a plane of
tion exclusive of subsystemb @Fig. 7~b!# show patterns cor-
responding to quasiperiodic and chaotic signals for 35.9 m
and 38.7 mW, respectively. The same attractors reconstru

-
-

ts.

FIG. 6. Numerical simulation for the same parameters as in F
4 but d58.0 pointing out a complex sequence of bifurcations in
synchronization transition associated with the torus bifurcation.~a!
Bifurcation diagram representing the total phase shift of devicb
~in the coupled system! and the relative phaseu as a function ofce

near the Hopf bifurcation of the fixed point, which occurs subcr
cally atce538.57. The periodic statea derives from a sequence o
cyclic saddle-node bifurcations.~b! Continuation of the bifurcation
diagram for higherce values by representing either the relativ
phaseu, for states with almost constantu values, or the mean
frequency difference between the two units for the quasiperio
solutions with increasingu.
3-5
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in a hybrid plane of the two subsystems@Fig. 7~c!# indicate a
high correlation of amplitudes for 35.9 mW but a poor o
for 38.7 mW. It is an example of transition to chaos in t
coupled pair without changes in the phase relationship
tween the two oscillators, i.e., both units evolve with t
same mean frequencies and with the same regular phase
as before, while the amplitudes has lost correlation. W
further increasingPe the system evolution remains chaot
while u(t) becomes first irregular~41.8 mW! and then tends
to restabilization by showing intervals ofu oscillations
conected by 2p jumps~44.2 mW!. This u behavior has been
also found in simulations of sets of coupled phase oscilla
near phase synchronization transitions@31#. For Pe values
near 50 mW the system recovers quasiperiodicity, altho
with a lower mean frequency difference.

IV. TWO COUPLED THREE-DIMENSIONAL SUBSYSTEMS

Phase synchronization transitions have been also obse
in coupled oscillators created on a three-layer BOITAL d
vice @32#, which already present chaotic evolutions when is
lated. The whole system is described with a reduced mo
equivalent to that used for the two-layer case, but only c
sidering heat transfer within the first layer of the device. T
model is written as

dc1
a

dt
52b11c1

a2b12c2
a2b13c3

a1G1A~ca!ce
a

1c1c1
b~ t2t1!,

FIG. 7. ~a! PR
a and PR

b time evolutions forPe535.9 mW and
38.7 mW.~b! Poincare´ sections of embedded attractors from thePR

b

time evolution forPe535.9 mW (d) and 38.7 mW (L). ~c! Poin-
carésections in the (PR

a ,PR
b) plane for the same cases as in~b! to

point out the correlation degree between oscillators.
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dc2
a

dt
52b21c1

a2b22c2
a2b23c3

a1G2A~ca!ce
a ,

dc3
a

dt
52b31c1

a2b32c2
a2b33c3

a1G3A~ca!ce
a ,

for subsystema and the same equations but exchanginga
with b for the other subsystem. The coefficientsbi j and Gi
depend on parameters of the spacing layers and the nonl
function A(cx) depends on the mirror properties@26#. The
simplification of the coupling scheme by disregarding h
coupling towards the second and third layers makes the
tegration easier and we expect that this has not relevant
sequences because equivalent results are obtained with
or two time delays in the two-layer case.

The results of Figs. 8–13 correspond to a pair of osci
tors generated in a BOITAL device made of 150mm of
glass, 35mm of sunflower oil and 1 mm of glass, with equ
input powers but different initial phase shifts, and a sepa
tion of d56 mm. Figure 8 presents the time evolution ofu
for different incident powers and Fig. 9 shows the time ev
lutions of both oscillators for the three lower powers. Aft

FIG. 8. Experimental results illustrating a synchronization tra
sition observed in a coupled pair of three-layer BOITAL oscillato
~a! Time evolution ofu for different input light powers.~b! Verti-
cally enlarged representation ofu(t) for Pe552.5 mW showing the
occurrence of fast oscillations. The time variation of the individu
phases of the coupled oscillators with respect to the harmonic

cillation at the mean frequencyv̄ is also represented.
3-6
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the Hopf bifurcation of the stationary solution, the syste
evolves with a single-frequency periodic oscillation that,
Pe551.9 m, begins to exhibit slight amplitude irregulariti
although the phase difference remains constant about 4p/3
6p/10. ForPe552.5 mW the system has experienced a
riod doubling unequally affecting the two subsystems.
mainly affects oscillatorb and the two oscillators describ
rather different wave form evolutions. The amplitudes a
phases of both the subsystems vary irregularly but, w
there is a lack of amplitude correlation, the phases tend
remain synchronized. The lack of correlation between
subsystem amplitudes is pointed out by the section of
embedded attractor represented in Fig. 10, while the s
chronization of phases is visible in Fig. 8~b!. The phase of
each oscillator presents large drifts butu(t) remains confined
within an interval lower thanp by describing oscillations
with a frequency equal to the half of the oscillatory fr
quency. Suchu oscillations are clearly associated with th
period doubling that mainly affects oscillatorb.

The differentiation of the units enhances whenPe is
slightly increased. Theu(t) fluctuations become of lowe
frequency but of amplitude as large as about 2p and from
time to time a 2p phase jump remains unrecovered (Pe

FIG. 9. Time evolution of the reflected powersPR
a and PR

b and
embedded attractors for the three lowerPe values of Fig. 8.
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553.0 and 53.6 mW!. The number of unrecovered phas
jumps increase with the input power and at a certain po
become rather regular (Pe554.3 mW). The spectra pre
sented in Fig. 11 illustrate how at the end of the transition
two units oscillate with different frequencies, i.e., the Four
components of one unit are almost absent in the other, b
is not clear how the new frequency appears during the tr
sition. The subharmonic peak in the spectra of both un
points out the period doubling process occurring below 5
mW. The initial frequency components remain always dom
nant in subsystemb without noticeable influence of addi
tional frequencies, while in subsystema the subharmonic of
the initial frequency becomes stronger than the fundame
peak and a broad spectrum emerges with several rele
peaks. Finally, a qualitative change happens in between
and 54.3 mW in which the subharmonic structures of b
the units dissapear and the system ends on a two-frequ
chaotic state with a clear dominance of one of the frequ
cies on each subsystem and with a well regularu(t) evolu-
tion. The final frequencies of subsystemsb anda seem to be
related to the initial frequency and its subharmonic, resp
tively. Comparison with the typical behavior of
periodically-forced oscillator suggests that the process m
be associated with the saddle-node bifurcation of
period-2 tongue, within which period-doubling bifurcation
are intrinsically involved@29#. Nevertheless, the lack of
fixed frequency in the present case of bidirectionally coup
oscillators makes rather difficult to characterize the proce

Figure 12 shows the evolution of the Lyapunov expone
with the incident light power through the PS transition,
well as the change of the difference between the mean
quencies of the two oscillators. The exponents have b

FIG. 10. Section of the reconstructed attractor forPe

552.5 mW pointing out the lack of correlation between the tw
reflected powers. The attractor has been embedded in@PR

a(t),
PR

a(t1t), PR
b(t), PR

b(t1t)], with t a fourth of the oscillation pe-
riod, and the section is for a constant value ofPR

a(t).
3-7
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determined from a six-dimensional embedding based on
reflection outputs of the two oscillators. Notice the prese
of two positive, one vanishing, and three negative expone
one of which manifests a tendency to vanish just when
frequency difference increases markedly and the phase
chronization is lost. This tendency would be in agreem
with the behavior found in the Ro¨ssler model by Rosenblum
et al. @3#, in which one of the two vanishing exponents e
isting in the absence of coupling becomes clearly nega
during the PS transition as a consequence of the interde
dence between the phases of the two oscillators.

The details of a synchronization transition may vary s
nificantly by slightly changing the parameters of the dev
and this occurs associated with changes in the actual b

FIG. 11. Fourier spectra of both reflected light signals for d
ferent input powers, corresponding to the transition of Fig. 8. T
labels 1 and 1/2 denote the peaks of the initial frequency and
subharmonic.
03622
e
e
ts,
e
n-
t

e
n-

-
e
r-

cational sequence experienced by the system. For insta
Fig. 13 illustrates a PS transition observed with the sa
device as in Fig. 8 and for the same conditions, except fo
slightly different value of the background temperature reg
lated by the thermoelectric plate. This temperature modi
the initial phase shiftc0

x of the cavity roundtrip for the two
nonlinear oscillators and consequently affects the nonlin
functions of both subsystems. In the case of Fig. 13,
synchronized state does not exhibit the period-doubling
furcation, and the phase jumps of the intermediate states
pears with a clear step-by-step succession and flat platea
similar contrast of behaviors may be seen in the numer
results of Fig. 14, where two PS transitions corresponding
the same parameter values except for the initial light ph
shifts are represented. Figure 14~a! corresponds to an almos
symmetric case with a rather small difference between
initial light phase shifts of the two subsystems. As in t
experimental case of Fig. 8, the synchronized state begins
desynchronization transition by showing oscillations in t
relative phaseu(t) at a frequency equal to half of the osci
lating frequency, which are clearly associated with a peri
doubling bifurcation, and the intermediate states show p
teaus with fluctuating 2p jumps. Figure 14~b! corresponds to
more different values of the initial phase shift for the su
systems and the desynchronization process is similar to
experimental case of Fig. 13. The long intervals of const
u between successive phase jumps indicate a stronger
dency to sy nchronization, as compared to the case of
14~a!, and it can be attributed to the dominance of one s
system on the other due to the asymmetry introduced by
initial phase shifts.

e
ts

FIG. 12. Lyapunov exponents and frequency difference evo
tion when the input power is increased. A tendency of one of
negative Lyapunov exponents to vanish can be observed betw
53.5 and 54.0 mW.
3-8
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V. CONCLUDING REMARKS

In conclusion, we have investigated the relative behav
of bidirectionally coupled pairs of slightly different nonlinea
oscillators as a function of the nonlinearity strength. T
analysis has been done by using pairs of two-dimensio
and three-dimensional oscillators in order for the individu
subsystems to be able or not to exhibit chaos when isola
A variety of desynchronization transitions from singl
frequency locked states to two-frequency states, where e
subsystem tends to be dominated by its own frequency h
been observed and characterized in detail. Intermediate s
with the characteristic 2p phase jumps generically appe
during the transitions, specially in those clearly associa
with a saddle-node bifurcation. Phase synchronization st
with uncorrelated amplitudes have also been usually fou
but for narrow ranges of the control parameter and alway
the onset of chaos. We have observed PS states with
units evolving either at equal or at different mean frequ
cies.

In comparison with the periodically forced oscillators, t
analysis of a pair of mutually coupled oscillators is mu

FIG. 13. Phase synchronization transition observed in the s
experimental conditions as in Fig. 8 but with a background te
perature of 20.6 °C instead of 20.3 °C: The differences between
two cases must be attributed to changes of the initial phase shif
the interferometric cavity.
03622
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e
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ch
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FIG. 14. Numerical simulations illustrating the influence of
slight modification of the initial interferometric phase shifts on t
PS transition. The dimensionless parameters@26# of the three-layer
device areh1,2,351, 26, 1; g1,2,351, 0.4, 6; K1,2,35D1,2,351,
0.1, 1; andhF5hB55; the separating distance isd55.6; the input
powersce

a5ce
b5ce/2 and the initial interferometric phase shif

are ~a! c0
a50.01, c0

b50.03 and~b! c0
a50.0, c0

b50.3.
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more difficult due to the lack of the fixed reference intr
duced by the pacing frequency. In the two-dimensional ca
the PS transitions associated with either a saddle-node
torus bifurcation have been clearly observed. The simp
situation corresponds to a saddle-node bifurcation of
period-1 locked state, in which the system response rem
regular during the transition except for a range of interme
ate states with intermittent phase jumps. In the case o
torus bifurcation, the presence of the second frequency
motes the desynchronization process by means of a
with both units at the same mean frequency but with os
latory slips inu, and which quickly becomes a regular qu
siperiodic state with different mean frequencies for the s
systems. The quasiperiodic regularity is then lost and ch
appears through a PS state with uncorrelated amplitudes
lowed by a sequence of complex phenomena.

In the case of three-dimensional oscillators, the des
chronization transitions appear with a so rich variety of fe
tures that make rather difficult the association of the proc
with a particular bifurcation of the whole system. The P
states with uncorrelated amplitudes have been found w
both oscillators evolving either at equal or different me
J

J.

de

M

s.

l.

03622
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frequencies and intermediate states with 2p phase jumps al-
ways appear. The analysis of Lyapunov exponents indic
that the transition from states with both units at equal me
frequency to states with the units at different mean frequ
cies is accompanied by a tendency of a negative expone
vanish.

The experimental observation of phase synchroniza
effects could be also investigated by introducing optical
stead of thermal coupling between the optothermal osc
tors. The main advantage will be the good control of t
coupling degree without the necessity of modifying the e
ternal input power to adjust the nonlinearity strength. In a
dition, the reflected light will connect the oscillators witho
any frequency filtering, while heat diffusion damps with th
frequency and the separation distance. Moreover, the op
coupling will be nonlinear and will introduce additional po
sibilities for complex behaviors.
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